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EVALUATION

This effort is a part of Research Area 7, Electronics, Sub-Area 3

Communications. The objective is to define and assess adaptive nulling

algorithms compatible with adaptive antennas with large numbers of antenna

elements or weights. This research work supports RADC TPO 4A, C 3 Surviv-

ability, Thrust - Communications ECCM. The overall objective is to advance

the state-of-the-art in adaptive array antennas to provide an Electronic

Counter Countermeasure (ECCM) capability for Air Force Communications Systems.

In this research effort, a new adaptive nulling algorithm was formulated

and modeled by computer simulation. The algorithm is based on a newly

developed generalized performance function that allows specification of the

directivity pattern of the antenna. The new performance function permits

constraints on the antenna gain in desired directions while minimizing

interfering signals. The strength of the constraint can be varied such that

deviations from it can be controlled, i.e., important locations can be

stiffened so that deviation from it remain small while constraints in less

important directions can be made softer so that larger vairations are

permitted. This algorithm is considered to be a significant advance over the

conventional least mean square error (LMS) algorithm, allowing use of excess

degrees of freedom to specify the antenna pattern. It also will allow use of

direction-of-arrival (DOA) desired signal discriminants in adaptive arrays in

applications where DOA information is not sufficiently accurate for

conventional algorithms. The next step should be to investigate hardware

implementation of the algorithm for specific communications applications.

/NA. GRANIERO
Project Engineer
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In the field of linear estimation, a common goal for the optimum

filter is to minimize the mean square error. The Widrow-Hoff Least

Mean Square (LMS) algorithm [1,21 is a well known algorithm used with

adaptive filters to approach the optimum filter. Subsequent researchers

have proposed various modifications to the LMS algorithm. These modl-

fications have been introduced when the adaptive filter does nct

perform satisfactorily with respect to other criteria in which the

researcher is interested. Once modifications are introduced to the

algorithm, the adaptive filter is no longer trying to minimize the

mean square error, but is instead optimizing some other (often unstated)

performance function.

This paper proposes the explicit addition of terms to the perform-

ance function reflecting the designer's additional criteria. A

specific modification is studied: the addition of "soft" constraints.

With a soft constraint, some constraint error results because the

weights do not exactly solve a specified set of linear equalities.

The optimum filter tries to minimize this constraint error simultaneously

with the error incurred by not performing perfect least mean square

estimation. The "soft-constraint LMS algorithm", closely related to

the LMS algorithm, is derived which causes the adaptive transversal

filter to approach the optimum filter. Convergence properties of this

algorithm are studied. A relation with-unexpected properties between

the output power of a signal from the optimum filter and the signal's

input power is derived. An application in the area of adaptive antenna

arrays is presented as an example of a use of the proposed performance

1



function and the corresponding adaptation algorithm. The relationship

between the soft-constraint LMS algorithm and other versions of the LMS

algorithm is discussed.

, I
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II. PREVIOUS WORK IN MODIFIED LMS ALGORITHMS

Adaptive filters using the LMS algorithm have been proposed for many

applications [3-7]. However, in some situations it has been necessary )r

desirable to modify the algorithm [8-12]. Frost [9] proiosed fci' 7rE

weights to exactly satisfy a set of linear equalities, which are calied

here a set of "hard constraints." This modification of the LMS aorr,

has been applied to adaptive antenna arrays, to force the gain of the

array to be exactly unity in a specified direction, while attenuating

signals arriving from other directions.

Another modification of the LMS algorithm is the "leaky" LMS

algorithm. This algorithm has a leak factor, so that in the absence of

inputs the weights decay to zero. This form has been proposed independ-

ently by several researchers [11-14]. Using the property that the leak

is equivalent to introducing a white noise in the input of the filter,

Treichler [11] proposed using the algorithm to modify the characteristics

of an adaptive line enhancer in a desirable manner. Ahmed et al [12]

used the leak effect to reduce numerical instabilities occurring in their

application. White [13] showed that the leak could reduce inaccuracies

caused by imperfect hardware multipliers.

Zahm [14] used the leaky LMS algorithm with adaptive antenna arrays

to suppress strong "jammers" in the presence of weaker signals. However,

using the leaky LMS algorithm alone resulted in the undesirable character-

istic that the array rejected all signals (and janners) after a period of

time. To counteract this effect, Zahm introduced a set of "steering"

weights into the algorithm, so that the weights of the adaptive array

3



converge to the steering weights in the absence of any janimer:r r si;r:als.

These steering weights prevent the adaptive antenna array from turi-In

itself off. Also, the steering weights Zahm chose as an example introdw'c-

ed desirable effects in the directivity pattern of the array.

Extending Zahm's work and the work on the leaky LMS algorithm

results in the modification to the LMS algorithm discussed here.

4



III. DEFINITIONS AND TERMINOLOGY FOR THE ADAPTIVE TRANSVERSAL FILTER

Aithough applicable to any linear combiner, this work assumes for

ease of discussion that the performance function and the soft-constraint

LMS algorithm developed later are used with an adaptive transversal

filter, as illustrated in Figure 3-1. Definitions and terminology for

the adaptive filter follow.

A sampled time sequence u(j) is the input to an n-I delay transver-

sal filter, where j is the time index of samples taken. The n weights

w0 , W I , .... Wn-l can be adjusted by the adaptation algorithm as time

progresses. The filter output y(j) is compared against a time sequence

d(j), which is called the desired signal. (The source and nature of the

desired signal varies with the application.) The purpose of tne filter

is to provide an estimate y(j) of the desired signal d(j). The differ-

ence between d(j) and y(j) is called the error signal e(j).

The input sequence u(j) may contain one or all of three types of

signals. A signal may be noise; it may be a deliberately produced

sequence but of no use in forming the estimate (an interferer or jammer);

or it may be a sequence relevant to estimating d(j).

The values at the taps of the transversal filter at time j are

denoted by the data vector X(j):

X(j) [ fu(j) u(j-l) ... u(j-n+l)]T (3-I)

The set of n weights is written in vector form as:

W [w0 w1 Wn 1]T (3-2)

5
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Then the filter output y(j), the estimate of d(j), is expressed as

the inner product of two vectors:

y(j) = xT(j)W = wTx(j) (3-3)

The error signal is simply

e(j) = d(j) - y(j) (3-4)

7



IV. THE PERFORMANCE FUNCTION

Any function measuring the performance of an adaptive filter mnust

reflect the concerns of the filter designer. The basic consideration

is often simply that estimation is being performed. The performance of

an adaptive filter in estimating an unknown signal is often measured

by the mean square error, a widely used criterion [15-17].

But the designer may recognize additional considerations in some

applications. Using an adaptive antenna array as an example, it is

sometimes desirable to specify the array gain in a particular direction,

provided this requirement does not increase the estimation error

(mean square error) excessively. But if the estimation error does

increase too much, it may be possible to decrease it significantly while

still staying close to (though not exactly meeting).the gain specifica-

tion.

The array example shows that the performance function must do two

things. First, it must measure the extent to which the array gain

specification is violated by the chosen filter, as well as measure the

estimation error. Second, the performance function must weight the

relative contributions of the estimation error and of the gain specifi-

cation error, so that a balance may be struck between the two sources

of error.

A performance function p(j) satisfying these two considerations is:

m

p(j) E{e 2(j)} + i, bi(eci) (4-1)
i=l

where Eta} denotes the expected value of a. The first term, E{e 2(j)},

8



is the mean square error (the estimation error); the second term is the

weighted contribution of the specification ("constraint") errors.

Definition (4-1) assumes that the designer specifies m constraints, and

that the error resulting from not exactly meeting constraint i is e

The designer selects the non-negative constant b.i to specify the

relative importance of the i th constraint error compared to the estima-

tion error. The greater b.i is, the more the error e .i affects the

value of the performance function.

The relation between the constraint errors e c and the adaptive

filter's weights is still unspecified. The filter designer is free to

choose any function. Different selections will produce different

adaptation algorithms. The form for constraint error e ci s tudied in

this paper is a linear function of the weight vector.

As an example, return to the adaptive antenna array. Let the it

constraint specify the desired gain in a particular direction at a

specified frequency. The actual gain of the array in this direction

(at the specified frequency) is calculated by a linear expression:

Tgain = A.iW ,(4-2)

where A.i is a constant vector with n components. (Section X contains

details for constructing Ai.) Thus, if the desired gain is the scalar

h., the constraint error is:

e ATW - h. (4-3)

Using this form for the constraint error in (4-1) results in the

performance function studied here:

9



P(J) = E{e 2 (j)) + bi(ATW'hi )2  (4-4)

This performance function is written in matrix form as:

p(j) = E{e 2 (j)} + (AW - H)TB(AW - H) (4-5)

where A is the mxn matrix composed of the vectors A.:

& Am]T
A [Al A 2 ... Ai ...A ; (4-6)

B is the mxm diagonal matrix with diagonal elements b.: -

8 diag[bl,b 21. ... i ...,bM] (4-7)

and H is an m dimensional vector composed of the individual desired

constraint values hi

H = [h1 h2 ... hi ... h]T (4-8)

This performance function (4-5) will be called a "soft-constraint least

mean square error performance criterion." The constraints are called

soft because, unlike constraints in most optimization problems, they

can be violated (not satisfied exactly).

The goal of the adaptation algorithm which is developed in section

VIII is to find the weight vector that minimizes the performance

function p(j) in (4-5).

The dependence of p(j) on the weight vector W is important. The

absence of non-global minima is desired, since this absence helps

prevent an adaptation algorithm from settling to an incorrect weight

vector (i.e. finding a local optimum). The dependence of p(j) on W is

10



obtained by expanding the mean square error term in (4-5) and using

(3-3):

E{e 2 (j)} = E{[d(j)-y(j)] 2}

= E{d 2(j) - 2d(j)XT(j)W + wTx(j)T(j)W}

= E{d 2 (j) - 2PT (j)W + wTR(j)W , (4-9)

where the cross correlation between the data vector X(j) and the

desired signal d(j) is denoted by P(j):

P(j) E{d(j)X(j)} ; (4-10)

and R(j) denotes the autocorrelation matrix of the data vector:

R(j) E{X(j)X T(j)} (4-11)

Substituting (4-9) into (4-5) expresses the performance function

directly in terms of the weight vector W:

2.T TT
p(j) = E{d2(j)} - 2pT(j)W + W R(j)W + (AW - H)TB(AW - H) (4-12)

Clearly, p(j) is a quadratic function of the weights. Because it is a

sum of squared quantities, it cannot be negative. Thus one of two

situations exists. The first possibility is that there is exactly one

minimum to the performance function, and only one weight vector achieves

this minimum. This situation may be visualized as a parabolic bowl in a

hyperspace of dimension n. The second possibility is that the perform-

ance function attains the same minimum value for a whole set of weight

vectors. In this case the set of weight vectors forms a connected

space so that all minima of the performance function are adjacent to one

11



another; there are no isolated minima. This situation may be visualized

in an n-dimensional hyperspace as a trough, equally deep at all points

along the bottom of the trough, and with parabolic sides to the trough.

This paper's primary interest is on the first case, where the

weight vector yielding the optimum (minimum) value of the performance

function is unique. The analysis can, if desired, be extended to the

second situation, by essentially considering a smaller hyperspace which

contains a unique minimum.

12



V. THE OPTIMUM FILTER

This section derives an expression for the optimum weight vector,

defined here as the unique weight vector specifying the filter which has

the optimum (minimum) performance p(j). The condition under which the

minimum p(j) occurs with a non-unique weight vector is also determine .

Any weight vector W minimizing the performance function p(j) forces

the gradient of p(j) to zero. From (4-5), the overall gradient of p(j,

with respect to W is:

7Wp(j) = 2..Ee ( AU _ - H)TB(AW -H] (-)

Analyzing the first term by taking the gradient of (4-9) yields:

wE{e 2(j)} = -2[P(j) - R(j)W]r  (5-2)

This first term of the overall gradient comes from the mean square error

(estimation error) term of the performance criterion. This is the same

gradient used to develop the LMS algorithm.

Analyzing the second term of (5-1) yields:

w[(AW - H) TB(AW - H)] = 2[ATB(AW - H)]T  (5-3)

This second term is due entirely to the soft constraints imposed by the

filter designer.

From (5-1) the overall gradient is the sum of (5-2) and (5-3):

?wp(j) = -2[P(j)-R(j)W]T + 2[AB(AW - H)]T . (5-4)

The optimum value for W occurs when the gradient (5-4) is set equal

13



.... . . - ' ..... . . .. ... .

to zero, yielding:

[R(j) + ATBA]W : P(j) + ATBH (5-5)

Thus the necessary condition for the optimum (minimum) performance to

occur at a unique weight vector is that the matrix R(j)+A TBA be nonsin-

gular. Under this condition, the unique optimum weight vector, denoted

W opt(J.), is:

Wopt(i) = [R(j)+ATBA] " [P(j)+ATBH] (5-6)

Note that it is not necessary for either R(j') or ATBA to be nonsingular.

In fact, one use for the soft-constraint LMS algorithm arises when the

data vector autocorrelation matrix R(j) is indeed singular (or possibly

just ill-conditioned). In such a case a set of soft constraints can be

generated to yield a unique optimum weight vector, as has been done with

the leaky LMS algorithm [12].

14



VI. AN ASSUMPTION OF STATIONARITY

The remainder of this work assumes that the signals d(j) and u(j)

re generated by stationary stochastic processes. Thus, the statistics

(j) and R(j), the performance criterion p(j), and the optimum weight

ector Wopt(j) are constant, and are now denoted by P, R, p, and Wop t

espectively, dropping the time index j.

Using this assumption of stationarity, the performance function

is now written from (4-5) as:

p = E{e 2(j)) + (AW - H)TB(AW - H) , (6-I)

the gradient of p from (5-4) is:

T T]T
Vwp = -2[P - RW] + 2[ATB(AW - H)] , (6-2)

and the optimum weight vector W is written from (5-6) as:
opt

= (R+ATBA)(p+ATBH) . (6-3)

15
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VII. DETERMINATION OF THE OPTIMUM WEIGHT VECTOR BY GRADIENT SEARCH

Calculating the optimum weight vector using (6-3) is not always fea-

sible, even when all quantities are known. This may be due to the size of

the filter, or to numerical difficulties caused by properties of the mat-

rices. Thus alternative approaches have been devised. A common technique

is to make successive approximations to the optimum weight vector. Given

one estimate of the weight vector, denoted by W(j), the next estimate,

W(j+l), is iteratively generated from W(j), governed by how well W(j)

satisfies (5-5). The time index j denotes sequential estimates since it

is assumed here that one update occurs at each time instant.

The technique of successive approximation used in this research is

called gradient search [18]. The gradient of the performance surface

is calculated for the current value of the weight vector, W(j). The grad-

ient specifies the direction of weight vector change which will increase

the performance function p most rapidly; but since the goal is to reduce

the performance function, the next estimate of the optimum weight vector

is obtained by moving from the current estimate in the direction opposite

to that of the gradient, through a distance proportional to the magnitude

of the gradient:

T
W(j+1) = W(j) - wvwp , (7-1)

where p is a positive constant chosen by the filter designer.

Using (6-2) for Vwp in (7-1) gives the update equation:

W(j+l) = W(j) + 2p[P-RW(j)] - 2,jATB[AW(j)-H] (7-2)

16



Repeatedly using this update equation causes the estimate of the optimum

weight vector to approach the actual optimum W of (6-3), provided is

small enough (see section IX).

17



VIII. THE SOFT-CONSTRAINT LMS ALGORITHM

The algorithm (7-2) for approaching the optimum weight vector Wop t

is applicable only if all quantities are known. Such knowledge is gener-

ally not available in practice. If the statistics of the input signal

u(j) are unknown, then P and R are unknown. This can occur when a known

signal is subject to additive noise, is passed through a filter wnose

characteristics are not perfectly known, or is distorted. Nevertheless,

it is still possible to perform signal estimation subject to soft con-

straints. To do this, the update equation (7-2) is modified by replacing

P and R with estimates. The estimates chosen must depend upon the input

signal u(j), so that these estimates are based on data statistics,

rather t- n on a priori guesses. The estimates chosen are:

P = d(j)X(j)

_ = X(j)XT(j)

It is easily shown that these estimates are unbiased:

E(P} = E{d(j)X(j)} = P

(8-2)
T

EtR} = E{X(j)X (j)} R

Thus the gradient search algorithm (7-1) is replaced by:

W(j+l) = W(j) - W Tp (8-3)

where an estimate of the gradient is used in place of the true gradient.

This means that the estimates P and k replace the true values of P and R

18



in (6-2), yielding:

T T T
VWp -2[P-RW(j)] + 2,ATB[AW(j)-H]} (8-4)

Substituting (8-1) into (8-4) results in:

V p = -2[d(j)X(j)-X(j)XT(j)w(j)] T + 2{A B[AW(j)-H]} T _T-5)

Using definitions (3-3) and (3-4) in (8-5) and rearrangir, yields:

7p=T T T

W = -2e(j)X (j) + 2A B[AW(j)-] ]-6)

Substituting (8-6) into the update equation (8-3) results in:

W(j+l) : W(j) + 2ue(j)X(j) - 21iATB[AW(j)-H] , (8-7)

gradient due gradient due to
to estimation constraint errors
error

or;

W(j+l) : (I_-2pATBA)W(j) + 2pe(j)X(j) + 2 A TBH (8-8)

Equations (8-7) and (8-8) are alternate forms of what is defined here as

the "soft-constraint LMS algorithm."
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IX. STATISTICAL PROPERTIES OF THE SOFT-CONSTRAINT

LMS ALGORITHM WEIGHT VECTOR

Random Noise in the Weight Vector

If the steepest descent update algorithm in (7-2) is used to adapt

the weight vector, the resulting weight vector sequence depends only on

P, R, and the weight vector's initial value. In this ideal case, P and

R are known a priori. Hence, a specific sequence is generated, regard-

less of which ensemble member of the stochastic processes generating

u(j) and d(j) occurs. This is not true, however, with the soft

constraint LMS algorithm (8-7) or (8-8). Although the gradient tern in

(8-4) due to the soft constraints is calculated perfecly from the

designer's specification of the soft constraints and knowledge of the

current weight vector, the term due to the mean square error is only an

estimate, since P and R are estimates of P and R. The estimate chosen

results in a random quantity, since it depends on the actual sequences

u(j) and d(j). This results in an ensemble of weight vector sequences.

The ensemble can be pictured as arising from a bank of adaptive filters,

all beginning with the same initial weight vector, but all receiving

different ensemble members for u(j) and d(j). This section discusses

the statistical properties of this ensemble of weight vectors.
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Convergence of the Mean Weight Vector

*Theorem 1: Convergence of the Mean Weight Vector

If 1) The soft-constraint LMS algorithm (8-7) or (8-8) produces

a weight vector sequence W(j) from a data vector se ence

X(j) and a desired signal sequence d(j), and if

2) W(j) and X(j) are statistically independent, and if

3) The matrix R+ATBA is nonsingular, and if

4) 0< <X 1

max

where Xmax -axieig R+ABA},

eig{Y)} is the set of eigenvalues of matrix Y,

and maxta set} is the maximum value of the set,

Then in the limit the mean weight vector converges to the optimum

weight vector:

lim E{W(j)} = W o (9-1)
j-*cc

where E{W(j)} is the expected value (mean) taken over the ensemble

of weight vectors at time j.

The proof of this theorem is contained in Appendix A.

The definition of convergence used in Theorem I is weaker than that

used with stochastic approximation methods [19]. The latter require

that in addition to the mean weight vector converging to the optimum

value as given in (9-1), the weight vector's covariance must go to zero;

meaning that every member of the ensemble of weight vector sequences

must approach the optimum. However, stochastic approximation methods

suffer from the disadvantage that if the signal statistics vary slowly

(are not strictly stationary), the weight vector cannot track the time-
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varying optimum value. By contrast, the soft-constraint LMS algorithm

can follow a slowly moving optimum weight vector; the exact character-

istics in this environment are a subject for further study.

The second condition of Theorem 1, that for convergence W(j) and

X(j) must be statistically independent, is not met when the soft-constraint

LMS algorithm is applied to a transversal filter (Figure 3-1). Due

to the nature of the algorithm, W(j) is a function of all past data

vectors up to X(j-l). And because of the operation of a tapped delay

line, X(j) is a vector consisting of exactly n-l elements of the vector

X(j-l). Thus, since W(j) and X(j) are both functions of X(j-l), they

cannot be statistically independent of each other. However, when the

adaptation constant p is small, W(j) depends only weakly on X(j-l);

hence the cross-correlation between W(j) and X(j) is small, yielding a

close approximation to the assumption of independence. The effect of

violating this assumption has been studied for the LMS algorithm

[20-221, with the conclusion that the weight vector mean converges to

a value which is biased away from the optimum weight vector; but a

value as close as desired to the optimum can be attained by making

small. It is expected that the same behavior can be proved for the

soft-constraint LMS algorithm, due to the close similarity to the

standard LMS algorithm. Experience with the algorithm supports this

expectation.

Note that the maximum value for i permitting convergence of the

mean weight vector (condition 4 of Theorem 1) depends on Xmax' which

is unknown when R is unknown a priori. However, an upper bound on

Xmax which is easy to compute in an actual p,-oblem is:
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A max max{eig{R+A BAM}

< max~eig{R}} + max{eig{A TBA}J (9-2)

This is true since all eigenvalues of R and ATBA are non-negative, so

the maximum eigenvalue of (R+ATBA) cannot be larger than the sum of the

maximum eigenvalues of R and ATBA. Now the maximum eigenvalue of ATBA

is available, since these matrices are predetermined by the filter

designer. And since the trace of an autocorrelation matrix is the sum

of its (non-negative) eigenvalues, the maximum eigenvalue of R must be

less than or equal to the trace of R, which is just n times the input

power E(u2 (j)} to the filter. Thus

Xmax < Tr[R] + max{eigfATBA}}

< n[E{u 2(j)] + max{eig{A TBA}} (9-3)

so that a sufficient condition on i to satisfy assumption 4 of Theorem

I is:

0 < < ' (9-4)
n[E~u (j)}J] + max{eig{ATBA}}

which can be calculated without a priori knowledge of R. It is generally

more restrictive than the bound of Theorem 1.

The proof of Theorem 1 in Appendix A points out the interesting

fact that the mean weight vector follows exactly the same trajectory

that the weight vector would follow if perfect gradient measurements

were available. Thus the approximation to the gradient (inclusion of

"gradient noise") does not change the convergence rate of the mean
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weight vector.

Weight Vector Covariance

The weight vector covariance measures how much individual memoers

of the ensemble of weight vector sequences vary from the mean weight

vector. Since the mean weight vector converges in the limit ::) t.-e

optimum weight vector, the greater the weight vector covariance is,

the further individual members of the ensemble of weight vector sequence

are from the optimum in the limit. This variation implies poor per-

formance.

The weight vector covariance matrix Cww(j) is defined by:

C w(j) = E{[W(j)-_W(j)][W(j)-9(j)] T }

= E{W(j)WT(j)} _ (j)gT(j) , (9-5)

where E{W(j)}, the mean weight vector, is written as W(j) to simplify

notation.

Theorem 2: Weight Vector Covariance

If 1) Theorem 1 holds, and if

2) W(j) and d(j) are statistically independent, and if

3) d(j) and u(j) are gaussianly distributed,

then the recursion equation for the weight vector covariance is:

CWW(j+ ) = [I-2i(R+ATBA)]CW(j)[I-2u(R+ATBA )]

+ 412 RC W(j)R + RTr[Cww(j)R] + REe2(j)1w(J +  - -

+ [P-RW(j)][PRW(jf)T1 (9-)

The proof of this theorem is contained in Appendix B.

24



It is important to know when the weight vector covariance matrix

remains bounded, since on occasion the mean weight vector will converge

to the optimum value, while the weight vector covariance matrix grows

without bound. This means that the individual members of the weight

vector sequence ensemble vary around the proper solution, but the vari-

ations grow larger and larger. Such a situation is undesirable. The

following analysis finds conditions where the weight vector covariance

matrix is guaranteed to remain finite, and finds other conditions where

the weight vector covariance matrix is guaranteed to grow without

bound. The behavior of the weight vector covariance matrix is unde-

termined for the remaining cases.

The trace of the weight vector covariance matrix measures its

"magnitude". All off-diagonal terms of a covariance matrix are less

than or equal in magnitude to the largest of the diagonal terms'; and

the diagonal terms are all positive; so the trace upper bounds the

magnitude of every element of the covariance matrix. Applying the

trace (a linear operator) to each term of (9-6) yields the recursion

equation for the trace of the weight vector covariance matrix:

Tr[Cw(j+l)] = Tr{j[-2i(R+A TBA)]C ww(j)-21i(R+ATBA)]3

+ 42{Tr [RCw(j)] + TrCR3Tr[Cw(j)R]

+ Tr[R]E{e 2(j)Iw (j(j)}

+ P.Rg(j)]T[pER (j)]} . (9-7)

This results from applying Schwarz's Inequality to the autocorrelation
function of a stationary process.

25



Theorem 3: Sufficient conditions for boundedness of the trace

of the weight vector covariance matrix

1) If Theorem 2 holds, and
2

2) if a) y 2x+ Y Tr[R] <X Xmmax - max min

and

Amin
0 < ' < 2 +2Xmin Ymax + YmaxTr[ ]

or if b) y2 + y Tr > X X

max max max min

and

Xmax+< 2  + 2 + TrER

max +Ymax max r[

where

Ymax max{eig{R}}

A T

Amax = max{eig{R+ATBA}}

Xmin = mineig{R+A BA}}

Then Tr[Cww(j)] will be bounded for all time.

The proof of this theorem is contained in Appendix C.

Theorem 3 presents conditions on p which are sufficient to

guarantee that Tr[C w(j)] is a bounded sequence. Next, necessary

conditions for Tr[Cww(j)] to be a bounded sequence are determined;

however, these are not sufficient conditions.
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Theorem 4: Necessary conditions for boundedness of the trace

of the weight vector covariance matrix

For Tr[ CWW(j)] to be a bounded sequence, it is necessary that

1) Theorem 2 hold, and also that

a) When 2 + Tr[R] > A 2
2min mn - - max'

that 0 < h <2 2 Xmax

max Ymin Ymin T r [
]

b) When A2. 2 2

nn- Ymin Ymin - - max'

that 0< i < 1
Ymin +YiTrR ]

2 2Tr[] < X2
c) When ¥min +Ymi - min'

that 0 < w < 2 +2 + nTr[R]
X min +Ymin +Ymin -r

The proof of this theorem is contained in Appendix D.

Figure 9-1 demonstrates some of the interrelationships among the

bounds on i presented in Theorems 1, 3, and 4. It will be seen that

satisfying the bound on p is not always adequate to obtain good per-

formance. The figure is an example, obtained by plotting the various

2.bounds on u as a function of the power of a signal, u , in a particular

environment

tFigures 9-1 and 9-2 were obtained by assuming that a six tap filter

is being used, receiving a signal of power ct 2 and a noise of power
1, with ymax receiving half the input power, and the rest of the power

distributed evenly among the remaining eigenvalues, and assuming that

the eigenvalues of ATBA all have a value of 15.
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Abbreviations:

MWV = Mean Weight Vector
WVC = Weight Vector Covariance'

div 
Curves:

erg MWV A: Bound on i guaranteeing MWV
diverges convergence (from Theorem 1)

B: Bound on 4 guaranteeing WVC
boundedness (from Theorem 3)

C: Bound on p necessary for WVC
boundedness (from Theorem 4)

C

MWV diverges

BMWV

converges

MWV converges, and MWV converge
WVC is bounded VC unbounded(

Signal Power 2

Figure 9-1: Sample relationships of bounds on a
from Theorems 1, 3, and 4 (assuming
all other Theorem conditions met)
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Assuming all other conditions of Theorems I through 4 are met,

if p lies below curve A, then the mean weight vector will converge.

If p lies above A, then the mean weight vector will diverge, and the

tonditions on Theorems 2, 3, and 4 are not satisfied, so behavior of

the weight vector covariance matrix is unknown. If p lies below

both curves A and B, the weight covariance matrix is guaranteed to be

bounded. The snaded area at the lower right of Figure 9-1 where :-Lrve

A lies above curve C is particularly interesting. If ,, lies within

this shaded region, the mean weight vector converges because _ is below

curve A, but the weight vector covariance matrix is guaranteed to

grow without bound. This performance is unacceptable even though the

mean weight vector converges.

Contrasting with the above is the area at the extreme left of

the figure (low signal power) where curve A lies below curve B, the

bound on jj which guarantees that the trace of the weight vector covar-

iance matrix remains bounded. In this case, and in this case only,

satisfying the bound on 1 to guarantee convergence of the mean weight

vector also guarantees that the weight vector covariance will remain

finite.

There are other areas of the figure where the mean weight vector

is guaranteed to converge, but it is unknown if the weight covariance

matrix will remain finite or not. Thus Figure 9-1 demonstrates that

the bound on , from Theorem 1 by itself is insufficient to guarantee

desired behavior; the bounds from Theorcms 3 and 4 must also be con-

sidered.

A single upper bound for i is desired which guarantees that the

mean weight vector converges, and also guarantees that the weight
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vector covariance matrix remains bounded. A useful bound should be

calculable from prior knowledge and input signal power only, and not

depend upon knowledge about the data vector autocorrelation matrix R.

It can be shownt that the bound in (9-4), which meets the criteria of

caiculability and guarantees that the mean weight vector converges,

does not guarantee boundedness of the weight vector covariance matrix.

However, a bound satisfying these conditions is:

0 < <1 (9-8)

3Tr[R] + Tr[ABA]

Appendix E demonstrates that this bound satisfies the criteria listed

above.

The bound (9-8) is plotted as curve D in Fig. 9-2, along with the

bounds for convergence of the mean weight vector and the bound guar-

anteeing boundedness of the weight vector covariance matrix. This

figure confirms that the bound (9-8) lies below the other bounds. It

also demonstrates that the bound (9-8) can be overly rest'ictive,

since it lie.s so far below curves A and B. The distance between the

bound (9-8) and the curves A and B aepends partially on how closely

the traces of the matrices are related to the maximum eigenvalues; the

closer the trace is to the maximum eigenvalue, the closer (9-8) will

be to curves A and B.

For example, consider the scalar case with ymax:ymin=1 , Tr[R]=l,

maxeig{ATBA}:=l (which implies Xmax= 2).
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Abbreviations:
MWV = Mean Weigh, V.tr
4VC = Weight Vect:. -

Curves:
A: Bound on ; guar, iteein(

convergence (f r :i T -
B: Bound on , gucrc-' ,e- .

boundedness (frf;n T,':jo - 3
D: Calculable bound on , t.- , P-

guaranteeing MW conver g .Tic, and
SWVC boundedness

A1 A
0

4-J

CB

00

2
Signal Power a

Figure 9-2: A calculable bound on j guaranteeing
mean weight vector convergence an;i
weight vector covariance boundtdress
(assuming all other Theorem c;ndi i,'r, ,
met)
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X. AN APPLICATION TO ADAPTIVE ANTENNA ARRAYS

This section demonstrates an application of the soft-constraint

LMS algorithm to adaptive antenna arrays. The soft constraints arE

used to affect the shape of the antenna array's directivity pattert

Fig. 10-1 shows the adaptive antenna array system. Ea:h of ti

six antenna elements is omnidirectional. The output of each anten,

element, s1 through s6, is fed to its own two-tap (and two-weignt)

adaptive transversal filter 1TF through TF6). The summed outputs
1 T 6)

of the filters form the system output y(j). It is assumed that no

desired signal d(j) is available, so the error signal e(j) is the

array's output y(j). The objective of the algorithm with this system

is to minimize the output power; simultaneously trying to keep the

array's gain in certain directions at certain frequencies close to

values specified by the designer.

The weight vector of the antenna array system is constructed

by stacking the six weight vectors of the individual adaptive filters.

Denote the weight vector of transversal filter k at time j by the

two dimensional vector Wk(j); the weight vector W(j) of the entire

system is then a twelve dimensional vector:

WOj) = [W T(j) WT~j . WT~ ... WT ().(10-1)

Construct the data vector X(j) for the entire system similarly.

The soft constraints will be used to specify desirable antenna

gains in a particular direction at a specified frequency.

Imagine the antenna array receiving a sinusoid of power C2 6tr

frequency wr from direction 6r" Denote the sinusoid at the input to
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Two-tap adaptive
transversal filters

Omnidirectional Antennas S [GNRL
Speed of Propogation = . USED FOR RDRPTRTEON
Sampling Interval = .125

Figure l0-1. Adaptive Antenna Array used inFigures 10-2 through 10-12.
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transversal filter TF kat time j by the phasor C rexp{i[w rjT+O ]k}' where

Ork is the signal's phase difference between sensor k and some arbi-
trary reference point. rk is a function of the angle of arrival of

the signal (0 ) and of the antenna geometry. In this case the data

vector is:

F rCexpii[w jT+O r1} (data in
Crexp{i[W r (j -I )T+Orl 1 1 TF1)

XWj (10-2)

- ----------------

C rexpi~wjT +4r6 } (data in

LCrexp{i[Wr (j -l)T+ 6 J TF 6)

Since the array output is X T(j)W(j), the array gain to this signal is

x T O)WOj),c exp{iw rjT} = [X T 0)/Cr exp~iwrjT}]W(j). Define a vector

A r by X (j)/C rexp~iw jT};

exp{i~rl}

expi( pr ~T)'

A r (10-3)

L expfi~pr6}

exp{iG r6-'r T)}

The array gain to signal r at time j is A TW(j). Suppose it is desir-r
able that the array gain to this signal be D rexp-ir I. Then the
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constraint is written as

ATW(j) D expfiq r} , (10-4)
r r r

which is made a soft constraint. But W(j) is a set of real we,.its,

while Ar and Drexpfinr } are complex quantities. The proposed con-

straint can still be specified with purely real v.lue: b., sLpeari.-.

it into the real and imaginary parts:

Re{A)T}W(j) = Re{D exp{inr} , (10-5)r r r.

Im{Ar}W(j) = Im{Drexp{inr}} (10-6)

This yields two constraints which are used as soft constraints. Thus

the antenna array attempts to keep a complex gain of Drexp~inr} in

direction er at frequency wr, but sinceethe constraints are soft, the

gain can vary from the specification (Drexp{inr}).

This procedure can be followed for several different sinusoids,

at the same or different frequencies, yielding a set of constraints.

Form the set of constraint vectors (A r) into a matrix A; stack the

specified gains into a corresponding vector H. Then the set of soft

constraints is:

AW = H (10-7)

Weight the soft constraints by constants br, which compose the dia-

gonal weighting matrix B used in the algorithm (8-8) or (8-7).

Three different sets of constraints, derived as shown, are listed

in Tables 1, 2, and 3. The features and effects of each set of con-

straints are now studied.
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rhe Effect of Table I Constraints

Figures 10-2 through 10-6 show the first example of the use of soft

constraints. The soft constraints specify unity power gairn it frequency

2, in the directions 0, 10, 120, 180, -120, -10 (in degrees). The

constraints are weighted equally at 1. Table 1 summnarizes these

constraints.

Direction Amplitude Phase Constraint
of of Desired of Desired Weighting

Constraint Gain at Gain Factor
(degrees) Frequency 2. (degrees)

er Or fly. br

0. 1. 180.0 1.
10 1. 177.3 1.
120 1. -90.0 1.

-180 1. -180.0 1.
-120 1. -90.0 1.
-10 1. 177.3 1.

Table 1 -Constraint Set 1

Figure 10-2 shows the antenna directivity pattern that results when

the constraint equations (10-7) are solved for the weight vector which

satisfies them exactly. This figure is a plot of the power gain that a

signal at a frequency of 2 receives, as a function of the arrival

direction of the signal, when the weight vector is the solution to the

constraint equations.

Figure 10-3 shows the antenna directivity pattern resulting when a

unity power sinusoid at frequency 2 is received from 0 degrees, when the

antenna array system has adapted to the point of convergence. This

example (and all others in this section) also has an isotropic white
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12

1800

-10,

I OdB

- Constraint (figures next to constraint points are
constraint weighting factors)

Figure 10-2. Antenna array directivity pattern determined
by soft constraints listed in Table 1.
(Weight vector frozen at the solution to the
constraint equations.)
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:120 0

180 
signal

- Constraint (figures next to constraint points are
constraint weighting factors)

Figure 10-3. Antenna array directivity pattern after adaptation by
the soft-constraint LMS algorithm (8-8) with:

1) A sinusoid of power 1, frequency 2, from 0'
2) Soft constraints of Table 1

3) Isotropic noise of power 0.1
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noise field impinging on the antenna array. The noise power at each

antenna element is 0.1. Recall that the goal is to minimize the output

power while trying to keep the constraint errors small (i.e. keep the

'*11'gain in the constraint direction close to the constraint values). It can
be seen that in the signal's direction the array gain has decreased

slightly from that of Fig. 10-2. But as the gain in the signal direction

has decreased, the constraint error in that direction has grown (as the

constraint errors in the 10 and -10 degree directions have also). Thus

the soft constraints result in the gain in the signal direction remaining

high, keeping the constraint errors low. The constraint errors at 120,

-120 and 180 degrees are kept small without increasing the system output

power significantly.

Figure 10-4 shows the converged antenna array directivity pattern

for the same constraints, when a unity power sinusoid at a frequency of

2 is received from 60 degrees, an angle not near any of the constraints.

When the adaptive filters reach convergence, the signal is attenuated by

30dB, while the constraint error remains small.

Figure 10-5 shows the antenna array directivity pattern for the

same set of constraints (Table 1) when the unity power sinusoid at a

frequency of 2 is received from 120 degrees, coincident with a constraint.

The attenuation in the signal direction is small compared to that of

Figure 10-4, but is greater than that of Figure 10-3, in which the signal

was arriving close to three constraints, instead of only a single

constraint.

Figure 10-6 is a plot of the converged array gain in the signal

direction, for all possible signal arrival directions. This plot is
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120 0Sga

180° 0

~-I0;

-l2OdB

- Constraint (figures next to constraint points are
constraint weighting factors)

Figure 10-4. Antenna directivity pattern after adaptation by the

soft-constraint LMS algorithm (8-8) with:

1) A sinusoid of power 1, frequency 2, from 600

2) Soft constraints of Table 1
3) Isotropic noise of power 0.1
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Signal Power : 1.

1 2

1 80~

.. 0"

1 .d

- Constraint (figures next to constraints points are
constraint weighting factors)

Figure 10-5. Antenna array directivity pattern after adaptation by
the soft-constraint LMS algorithm (8-8) with:

1) A sinusoid of power 1, frequency 2, from 1200
2) Soft constraints as listed in Table 1
3) Isotropic noise of power 0.1
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180 0-

-40d

-120

- Constraint (figures next to constraint points are
cunstraint weighting factors)

Figure 10-6. Converged array gain in the signal direction for all
possible directions of signal arrival.

Conditions:
1) Soft constraints of Table 1
2) Adaptation by soft-constraint LMS algorithm (8-8)
3) Sinusoid power 1, frequency 2
4) Isotropic noise of power 0.1

42



obtained by placing the unity oower signal at a specified direttion,

calculating the optimum weight vector for this signal configuration,

using this optimum weight vector to calculate the gait in the signal

direction, and plotting this gain as a single point in Figire 10-6. F'r

example, in Figure 10-5 the gain in the signal dire:tJ,), 2 .

is approximately .-6dB. This same gain is plotted on Ficl't: r -,

120 degree position. Figure 10-6 demonstrates that fo- t- ,

specified in Table 1 the gain remains high in directions rf ,

constraints, but signals are more strongly attenuated when not c,';e

constraints.

Effect of Table 2 Constraints

Figure 10-7 shows the converged array gain in the signal JirecL;*n.

Direction Amplitude Phase Constraint
of of Desired of Desired Weighting

Constraint Gain at Gain Factor
(degrees) Frequency 2 (degrees)

er Dr 0r br

0 1. 180.0 !.
10 1. 177.3

120 1. -90.0 .01
180 1. -180.0 .01

-120 1. -90.0 .01
-10 1. 177.3 1.

Table 2 - Constraint Set 2

for all possible directions of signal arrival, for the set of constraints

in Table 2. These constraints differ from the previous constraints in

that the weightings in the 120, -120, and 180 degree positions are

decreased by a factor of 100. Figure 10-7 shows the effect: the array's

gain to signals arriving from directions close to the weak constraints
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1200

1 800

• -lO:

-l200

- Constraint (figures next to constraint points are
constraint weighting factors

Figure 10-7. Converged array gain in the signal direction for
all possible directions of signal arrival.

Conditions:
1) Soft constraints of Table 2
2) Adaptation by soft-constraint LMS algorithm (8-8)
3) Sinusoid power = 1, frequency = 2
4) Isotropic noise of power 0.1
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is greatly reduced from the previous case (Fig. 10-6). This occurs

because the output power is significantly reduced by decreasing the array

gain in the signal arrival direction, while incurring only small

constraint errors due to the low weighting coefficient. Thus the weight-

ing coefficients control the "softness" of the constraint. A l3rre

weighting coefficient implies that the decrease in output power must be

large to allow a small deviation from the constraint; a small weighting

coefficient implies that greater deviation from the constraint is allowed

with little penalty, so the algorithm can decrease the output power

significantly.

Effect of Table 3 Constraints

Figure 10-8 demonstrates the effect on the large lobe of Figure 10-7

when the two constraints at 10 and -10 degrees are moved to 60 and -60

degrees and simultaneously weakened by a factor of 100. Table 3 presents

Direction Amplitude Phase Constraint
of of Desired of Desired Weighting

Constraint Gain at Gain Factor
(degrees) Frequency 2 (degrees)

er Dr r br

0. 1. 180.0 1.
60 1. 177.3 .01

120 1. -90.0 .01
180 1. -180.0 .01

-120 1. -90.0 .01
-60 1. 177.3 .01

Table 3 -Constraint Set 3

this set of constraints. Comparing Figures 10-7 and 10-8 shows that

when two strong constraints are at the 10 and -10 degree positions as in
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180 0

-40dB

_120, -60e

- Constraint (figures next to constraint points are
constraint weighting factors)

Figure 10-8. Converged array gain in the signal direction for
all possible directions of signal arrival.

Conditions:
1) Soft constraints of Table 3
2) Adaptation by soft-constraint LMS algorithm (8-8)
3) Sinusoid power = 1, frequency = 2
4) Isotropic noise of power 0.1
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Figure 10-7, the angular sector over which a signal is received without

significant attenuation is much broader than when only a single strong

constraint is present, as in Figure 10-8.

Antenna Array Gain in the Constraint Directions

Figure 10-9 shows the gain in the 0 degree direction maintained by

the soft constraint, for all possible arrival directions of a unit power

signal with a frequency of 2, for the constraints of Table 2. The plot

is calculated by placing the signal at a given direction, calculating

the converged weight vector, calculating the resulting gain at 0 degrees

(frequency of 2), and plotting it on Figure 10-9. The gain in the 0

degree position remains close to the unity gain specification, decreasing

only when the signal is also close to 0 degrees. When the signal arrives

from close to 0 degrees, the array gain in the 0 degree direction drops

slightly to reduce the system output power, but cannot drop significantly

without causing large constraint errors.

Figure 10-10 shows the array gain in the direction of the much

weaker constraint at 180 degrees for all possible arrival directions of a

unit power signal with a frequency of 2 (again using the constraints of

Table 2). Since the gain in this direction can vary greatly without

incurring large constraint error (no strong constraints in this region),

the adaptive array concentrates on minimizing output power rather than on

maintaining the constraint, as seen by the wide variation in the array's

gain in this direction.

A Two-Signal Case

Figures 10-11 and 10-12 show a two signal case. Figure 10-11 shows
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Figure 10-9. Array gain in the zero degree direction maintained by
the soft constraint, when array has been adapted to
convergence on a signal arriving from the direction
specified along the abscissa.

Conditions:
1) Soft constraints of Table 2, as listed
2) Adaptation by soft-constraint algorithm (S K
3) Sinusoid power = 1, frequency = 2
4) Isotropic noise of power 0.1
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Figure 10-10. Array gain in the 180 degree direction maintained by
the soft constraint, when array has been adapted to
convergence on a signal arriving from the direction
specified along the abscissa

Conditions:
1) Soft constraints of Table 2, as listed
2) Adaptation by soft-constraint algorithm (8-8)
3) Sinusoid power = 1, frequency 2
4) Isotropic noise of power 0.1
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constraint weighting factors)

Figure 10-11: Antenna array directivity pattern after adaptation by
the soft-constraint LMS algorithm (8-8) with two
signals

Conditions:
1) Signal #1 power = 1, frequency = 2, from 00
2) Signal #2 power 1 00, frequency = 2, from I0'°

3) Soft constraints as listed in Table 2
4) Isotropic noise of power 0.1
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the antenna array directivity pattern for a particular signal configura-

tion, with the Table 2 constraints. The signal (#1) arriving from 0

degrees has a power of 1; the signal (#2) arriving from 10 degrees has a

power of 100. Both signals have a frequency of 2. The figure shows

that the strong signal (#2) is greatly attenuated even though it is

arriving from a direction where a constraint is located. This is because

the signal is very strong compared to the constraint in this direction;

the array concentrates on attenuating the signal rather than on satisfy-

ing the constraint. The weak signal (#1) arriving from 0 degrees is only

slightly attenuated, because it is weak in comparison with any of the

constraints in the neighborhood. Note that the presence of the strong

signal has had little or no effect on the array's gain to the weak signal

(compare the gain with Figure 10-3).

Figure 10-12 shows the array's gain to the weak signal (#1) at 0

degrees as a function of the arrival direction of the strong signal (#2).

This figure shows that the array's gain to the weak signal is only

affected by the strong signal when the strong signal is arriving from a

direction very close to that of the weak signal. When the strong signal

arrives from 0 degrees the two signals are inseparable; the array acts as

if there were only one strong signal. Since this composite signal is

strong compared to the constraint at 0 degrees, the array concentrates on

attenuating the composite signal. As the strong signal moves away from

the weak signal, the array is better able to resolve the two signals, and

continues to attenuate the strong signal, while allowing the gain in the

direction of the constraint at 0 degrees to increase again.
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Figure 10-12. Array gain in direction of Signal #1 maintained by
a soft constraint, when array has been adapted to

convergence with Signal #2 arriving from the
direction specified along the abscissa

Conditions:
1) Soft constraints of Table 2, as listed
2) Adaptation by soft-constraint LMS algorithm 8-8)
3) Sinusoid #1 power = 1, frequency = 2, from 0
4) Sinusoid 42 power = 100, frequency = 2
5) Isotropic noise of power 0.1
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Summary

This section has demonstrated the use of soft constraints for

adaptive antenna arrays. It has shown that soft constraints can

maintain array gain in the presence of signals which are weak compared

to the constraints; but strong signals are attenuated. It was also

seen that the strength of constraints could be varied, and placing

constraints closely together could expand the angular sector over

which the array gain is maintained.
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XI. OUTPUT POWER DUE TO A SIGNAL AS A FUNCTION _f M.S INPUT POWER

This section investigates the power at the output of a converged

soft-constraint LMS adaptive filter, due to a particular input signal;

relating the output power to the input power.

When fixed (non-adapting) filters are used for signal processing, an

increase in the input power of a signal always means a corresponding

increase in the output power of the filter. But this is not necessarily

true for adaptive filters. An increase in the power of any signal can

change the optimum filter. And the new optimum filter might attenuate

the signal more strongly than the previous optimum filter. It is possible

that the increase in attenuation is so great that the signal's increase

of input power is more than cancelled; so it is possible that the output

power due to the signal is actually less than before. Thus, when a

signal increases its power at the input of an adaptive filter, the output

power due to the signal can actually decrease. This phenomenon is studied

in this section.

Assume that the time sequence u(j), the input to the adaptive filter,

consists of a stationary signal to be studied, denoted s(j); and that all

other signals in u(j) are also stationary, and when summed together are

denoted by n(j):

u(j) = s(j) + n(j) (ll-l)

Denote the autocorrelation of s(j) when it is in the tapped delay line

by a2R s, where a2 is the power of s(j). Denote the cross-correlation
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between s(j) and the desired signal d(j) by f(c)Pds' where f(a) is a

function of the input power of s(i). (Several expressions for f(c)

are studied later in this section.) Assume that s(j) and n(j) are

uncorrelated:

E{s(j)n(j)} = 0 . (11-2)

Denote the autocorrelation of n(j) when in the tapped delay line by

Rn, and the cross correlation between n(j) and d(j) by Pdn"

With these definitions the complete input autocorrelation matrix

is a2Rss+R nn , and the complete input cross-correlation with the desired

signal is f( )Pds+P

Using (6-3) the optimum weight vector is:

o .2s+Rn+ATBA)-I[f(a)Pds+PdR+ATBH]  (11-3)

For ease of notation, denote R n+ATBA by , and Pdn+ATBH by V; also

assume that U is a matrix of full rank. This yields:

Wopt = (a2R Is+U)- [f(a)Pds+V ] . (11-4)

The output power of the adaptive filter due to the input signal

under study s(j) is:

Pout = WT a2RsW " (11-5)

Using the optimum weight vector of (11-4) yields:

out= [f(a)P ds+V]T(a2Rs+U)-l, 2 Rss( 2Rs+U)-l[f(a)Pds+V]. (11-6)

Appendix F demonstrates that since R and U are both hermitian mat-

rices and U is nonsingular, a matrix S can be found such that:
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sT sS = IF (11-7)

S~us I , (11-8)

where T is a diagonal matrix, and I is the identity matrix. (S will

be a purely real matrix, since both R s and U are purely real. Thus

= S+.) Rearranging (11-7) and (11-8) yields:

=s s-Ts - , (11-9)

U = s-Is- I , (11-10)

where (ST)-1 is abbreviated to S-T. Substituting (11-9) and (11-10)

into (11-6) yields:

Pout - [f(a)Pds+V
]T( 2S- TT s +s -T is -l) -1

2 s- -T Ts-

.- 1 2
= [f(a)Pds+V] S(a 2_+)-lsTa 2S-TXs-S(a 2X+I)-I[f(T)Pds+V]

= [f(a)Pds+VJTs(aZ_+I 2  (a2i_+I)-sT[f(c)Pds+V] . (11-11)

Now since T is a diagonal matrix (T = diag( i)), pout can be

written in terms of individual components as:

n n c2 i 2Pout iiouti i (l  2 2pi+l) 2 s~()ds+V]1ou 1i (a:.l -ot i Tf~+J (11-12)

where {ST[f(a)P V]i denotes the i th element of the vector

ST[f(a)Pds+VJ.
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_ - - ...

Thus the output power is the sum of a set of components pouti

which vary individually as the input power a2 of the signal under

study is varied. The value of an individual component pouti of the
2

output power pout may be plotted as a function of the input power a

once f(a) is known. Three cases are of particular interest:

Case 1: f(a) = a.

The signal under study s(j) is correlated with the desired signal d(j),

but the power of d(j) remains constant even when the input power of

s(j) increases. This case can occur when d(j) is generated separately

from s(j). For this case, a component of (11-12) has the form

outi T p+V]} (11-13)

The shape of this function is shown in Figure 11-la. The figure

shows that the curve can have one of two forms, depending on whether

or not [STPds]i and [STV]i have the same sign. When the signs are the

same, the gain of the filter to s(j) increases slightly at first, then

decreases toward zero (as seen in Fig. 11-lb.) However, the rate of

decrease of gain compared to the rate of increase of input power is

such that the output power approaches an asymptotic value of

CSTPdsi/'Pi (as seen in Fig. 11-la). The decrease occurs because s(j)

begins to dominate n(j) and overwhelm the soft constraints, so the

adaptive filter begins to do power equalization to make the power of

filter output y(j) match that of d(j). For opposite signs, Fig. 11-la

shows that the output power due to s(j) can increase, then decrease to

zero again, and finally increase to the asymptotic value. The reason

for the decrease is that initially the weight vector is dominated by
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Figure 11-1. Soft-constraint LMS adaptive filter gain to a
signal component, and the corresponding signal component
output power, as a function of the signal component input
power. Case 1: f(a) = a.
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n(j) or the soft constraints, and the estimate of d(j) has the wrong

sign compared to d(j). Fig. 11-lb shows that the filter's gain begins

with the wrong sign. As s(j) grows, it has more effect on the oreight

vector. For a good estimate, the sign of the estimate and the filter

gain must change, causing the output power to go through zero at some

point.

2
Case 2: f(a) = a

The signal under study s(j) is correlated with the desired signal d(J),

and d(j) is derived from s(j), so that the power of d(j) increases

linearly with an increase in the power of s(j). An example of this

relationship is the line enhancer configuration [3,4,11]. In this case

a component of (11-12) has the form

p ~~~ 2 -T[ P V

Pouti - (2i+l)2 {§T[2Pds+V] i

Figure l1-2a shows the shape of this curve, The asymptote of the output

power curves (Fig. ll-2a) is a parabola. When _Tpds ]i and [sTvi have

the same sign, the output power curve essentially follows the parabola;

the soft constraints (and/or n(j)) cause the weight to be of the pro-

per sign but larger than necessary, so the output power curve is above

the asymptote. For opposite signs, the weight must again change signs,

causing the dip to zero output power as seen, then increase once the

proper sign is obtained. Fig. 1l-2b shows that in either case the fil-

ter gain approaches a constant.

Case 3: f(a) = 0.

The signal under study s(j) is uncorrelated with the desired signal

d(j). This occurs when ,(j) is noise or interference. In this case,
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Figure 11-2. Soft-constraint LMS adaptive filter gain to a signal
component, and the corresponding signal component
output power, as a function of the signal component

input power. Case 2: f(ct) 2
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a component of (11-12) has the form

i2 i { s T v 2 ( 1 -1 5 )Pouti - C (2 i+1)2 -

Figure 11-3a shows the shape of this curve. Here, the filter begins

to turn itself off as s(j) begins to dominate n(j) and the soft con-

straints. This curve is of strong interest because it shows that

strong signals can be attenuated much more than weak signals. This

phenomenon could be used to create adaptive filters which pass weak

signals but attenuate strong signals, effectively filtering signals

based on their strength. The quantity i determining where the peak

of this curve occurs is under some control by the filter designer,

since selection of the soft constraints affects zpi.
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Figure 11-3. Soft-constraint LMS adaptive filter gain to a signal
component, and the corresponding signal component
output power, as a function of the signal component
input power. Case 3: f(a) = 0.
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XII. RELATION OF THE SOFT-CONSTRAINT LMS ALGORITHM

TO OTHER VERSIONS OF THE LMS ALGORITHM

The LMS Algorithm

The LMS algorithm defined in references [1-3] is:

W(j+l) = W(j) + 2pe(j)X(j) (12-1)

By comparing (12-1) with the soft-constraint LMS algorithm (8-7) it is

seen that the LMS algorithm is a special case of the soft-constraint LMS

algorithm, since setting B = 0 in (8-7) yields (12-1). The effect of

setting B = 0 is that all of the soft constraints are turned off.

The Leaky LMS Algorithms

By examining (8-8) it can be seen that the "leaky" LMS algorithm

[11-13]:

W(j+l) = vW(j) + 2pe(j)X(j) (12-2)

is also a special case of the soft-constraint LMS algorithm. The leaky

LMS algorithm has a multiplier v on the W(j) term which is a positive

scalar less than one. The soft-constraint LMS algorithm has a correspond-

ing term l-2pATBA which is a matrix. However, if A is chosen to be an

identity matrix, and B is diagonal with the diagonal elements all equal

to a scalar y, then the multiplier in the soft-constraint LMS algorithm

(8-8) reduces to the scalar l-2uy.
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The other difference between the leaky LMS algorithm'(12-2) and the

soft-constraint LMS algorithm (8-8) is the presence of the driving term

4ATBH in the latter. However, by choosing H to be zero, this term

disappears. Thus, the leaky LMS algorithm is seen to be a special case

of the soft-constraint LMS algorithm, by choosing the constraints in the

latter to constrain each of the weights to zero, with identi.al weight-

ing on each of the constraints.

Zahm's Algorithm

Zahm's algorithm [14] is:

W(j+l) : vW(j) - 2iy(j)X(j) + V (12-3)

where V is a constant vector.

Zahm's algorithm is also a special case of the soft-constraint LMS

algorithm (8-8), when the matrices A and B in the latter are chosen in

the same manner as for the Leaky LMS algorithm, and a non-zero constraint

vector H is selected such that V=2pATBH, and with no desired signal

available.

Frost's Hard Constraint LMS Algorithm

Frost's algorithm [9] is extremely similar to the soft-constraint

LMS algorithm (8-8) because the constraints are identical. The only

difference is that Frost requires exact solution of the constraints at

all times. Intuitively, one would feel that as the soft constraints are

stiffened, the soft-constraint LMS algorithm's solution would approach

that of the hard-constraint LMS algorithm. This is true, and can be

stated as follows: denote the optimum weight vector for Frost's hard

constraint problem by Whc* Now consider letting the weighting matrix B
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on a set of soft constraints for (8-8) be multiplied by a scalar y, so

that the true weighting is yB. Then for the optimum weight vector Wop t

in (8-8):

lim Wop t = Whc (12-4)

This relation is proved as Theorem 5 in Appendix G.

Thus the optimum weight vector of the soft constraint LMS algorithm

approaches the optimum weight vector of Frost's hard constraint LMS

algorithm in the limit as the hardness (weighting) of the soft constraints

goes to infinity.
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XIII. CON L.LU$US AND DW:6SS .:

The designers of adaptation algorithms usually derive the

algorithms to minimize estimation error. But often the designer has

additional criteria for the algorithm to satisfy, which requires

modification of the algorithm. The underlying concept of this paper

is that the adaptation algorithm should be derived from a function

which explicitly includes terms involving all of the design criteria.

This paper has demonstrated the principle by combining a set of

soft linear constraints with a mean square error criterion. Once the

performance function was so defined, the soft-constraint LMS algorithm

was directly obtained.

It has been proved that in a stationary environment and when

certain conditions are satisfied, the soft-constraint LMS algorithm

causes the filter to converge, minimizing the performance function.

It was also shown that setting the adaptation constant to obey the

conditions for convergence in the mean was not always sufficient to

obtain good behavior; in some cases more restrictive conditions must

be observed. Since these conditions depend upon considerable a priori

knowledge of the environment, which is generally not available, an

even more restrictive condition was proposed which has the advantage

of depending on the environmenc only in that the total input power

(a measurable quantity) must be known.

The usefulness of the soft-constraint LMS algorithm has been

shown by applying it to an adaptive antenna array (section X). The

constraints were changed in strength, with resulting changes in the
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directivity pattern of the array and in its response to incor!n

sinusoidal signals. This example demonstrated the effect of varying

the "stiffness" of a constraint. A constraint in an important loca-

tion (direction of possible signal arrival) can be sti,'fened so th,:t

deviations from it remain small, while constraints in less important

locations can be made softer so that larger variations are permitted.

This may in some cases prove advantageous as a "trade-off" in return

for maintaining a close approach to minimization of estimation err)r.

This flexibility of the soft-constraint LMS algorithm could be an

advantage in builIding adaptive antenna arrays which attenuate strong

jammners while maintaining reception in directions where desirable

signals are expected to appear.

This paper has also derived a relation between the output power

of a signal from a converged soft constraint LMS adaptive filter and

the signal input power. This relation demonstrated the unexpected

behavior that in some cases, although the input power is increasing

monotonically, the output power could increase, then decrease to zero,

and then increase again. Another interesting case was shown where the

output power increases to a peak, and then decreases monotonically,

while the input power is increasing monotonically. It is possible that

useful applications of these output power phenomena exist; this is an

area for future research. In addition, no physical interpretation for

the matrix T' used in the development has been presented; some

properties of TV are given at the end of appendix F. This remains

an area for further study.
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It was shown that the LMS, leaky LMS, and Zahm's algorithms are

all special cases of the soft-constraint LMS algorithm. Thus, results

for the soft-constraint LMS algorithm also hold for these previous

algorithms. It was also shown that the optimum solution to a soft

constraint problem approaches the optimum solution of a hard constraint

problem as the stiffness of the soft constraints goes to infinity.

Thus the soft-constraint LMS algorithm is a generalization of

several existing algorithms. It has potential usefulness in a number

of areas.
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APPENDIX A

PROOF OF THEOREM 1: CONVERGENCE OF THE MEAN WEIGHT VECTOR

OF THE SOFT-CONSTRAINT LMS ALGORITHM

The theorem statement is:

Theorem 1: Convergence of the Mean Weight Vector

If 1) The soft-constraint LMS algorithm (8-7) or (8-8) produces

a weight vector sequence W(j) from a data vector sequence

X(j) and a desired signal sequence d(j), and if

2) W(j) and X(j) are statistically independent, and if

3) The matrix R+ATBA is nonsingular, and if

4) 0 < 1< - - - -

max

Then the mean weight vector converges to the optimum weight vector:

lim E{W(j)} = W (A-1)

The proof requires an expression for E{W(j)}. The update algorithm

for W(j) is the soft-constraint LMS algorithm (8-8):

W(j+l) = (I-21iATBA)W(j) + 21je(j)X(j) + 2pA TBH (A-2)

Expanding e(j) using (3-4) and regrouping terms yields:

W(j+l) I-2 [X(j)xT(j)+ABA]}W(j) + 2p[d(j)X(j)+ATBH] (A-3)
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Taking the expectation of this update equation, and using the assumption

that X(j) and W(j) are independent random processes yields:

E{W(j+l)} = [I-2'p(R+A TBA)]E{W(j)} + 2p(P+A TBH) (A-4)

This recursion equation is identical (after regrouping of terms) to

the recursion equation which is obtained for the weight vector when

perfect gradient measurements are available (7-2). Thus the mean of the

weight vector follows the trajectory that is obtained when perfect

gradient measurements are available.

Iterating (A-4) yields the relation:

j -1

E{W(j)} = [_-2p(R+ATBA)]JW(O)+21j {E EI-2u(R+ATBA)]t} (P+ABH) . (A-5)t=O

The summation can be replaced by use of the matrix identity:

1 j-l
(I-M(I-M) l  (A-6)

t=O

Using this identity in (A-5) results in:

E{W(j)} = [I-2(R+ATBA)jW(O)

= [I-2"4 (R+ATBA)]J[W(O)-(R+A BA)I (P+AT BH)]

(R+A - TBH) (A-7)

Recalling the expression for the optimum weight vector (6-3) and sub-

stituting this relationship in (A-7) yields:
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E{W(j)} [.L-41(R+eTBA)]j[W(0)-Wopt + Wopt (A-8)

Then (A-i) will be true for all W(O) if and only if

lim [_-2j(R+ATBA)] 3  = 0 (A-9)

This is true if and only if the magnitude of every eigenvalue of the

matrix [I_2u(R+ATA] is less than one (by the assumptior of nonsingular-

ity, every eigenvalue is nonzero). This condition is written as:

1l-2litl < 1 t=l, ..., n (A-10)

where Xt is the tth eigenvalue of the matrix R+AT BA. This condition

will be satisfied if and only if

0 < < for all t, tl, .... n (A-1l)
t

Since

< 1- for all t=l, ... , n (A-12)-ma x - t

the required condition is

0 < < l (A-13)
Amax

When this condition is satisfied, (A-9) is true, so that under the stated

assumptions the conclusion (A-i) of Theorem 1 is true.
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APPENDIX B

PROOF OF THEOREM 2: WEIGHT VECTOR COVARIANCE MATRIX RECURSION

The statement of Theorem 2 is:

Theorem 2: Weight Vector Covariance

If

1) Theorem 1 holds, and if

2) W(j) and d(j) are statistically independent, and if

3) d(j) and u(j) are gaussianly distributed,

then the recursion equation for the weight vector covariance is:

T T
CWW(J~l) [I-2i(R+A BA)J]C (3) [I -2vi(R+A BA)]

4 2 W W (j )R + R T r [ _ w ( )R ] W W (j ) }

+ [P-R (j)][P-RW(j)] Tj (B-1)

The proof begins by recalling the recursion expressions for the

weight vector W(j) and the mean weight vector W(j). The expression

for W(j) from (8-7) is:

W(j+l) = W(j) + 2;je(j)X(j) - 24ATBAW(j)-H] (B-2)

The expression for W(j) from rearranging (A-4) is:

i(j+l) : (j) + 21IP - 2iRW(j) - 21ATBAw(j) + 21ATBH (B-3)

Define the difference between the weight vector and its mean by:

AW(j) = W(j) - iW(j) (B-4)

Combining (B-2) and (B-3) results in a recursion equation for AW(j):
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,W(j+l) A\W(j) + 2p~d(j)X(i)-P]

-21[XWjX T(j)W(j)-RW(j)] - 2uA TBAAW(i)

Using recursion (B-5) in the definition of a covariance matrix

yields:
T

cww(i+1) = EI W(j+l)4 (j+fl[W(j4l)Yw(j+1)I I

TT

= E{AW(jX6W T(j) + 2pAW(j)[d(j)X(j)-P3

- 2vAW(j)[WT(i)X(i)XT (j)-WT(j)R] - 2,,iW(j)AwW A SA&

+ 2v[d(f)X(i)-P1AW T(i) + 41,2 d(i)X(i)-P][d~j)X(i)-PiJ

- 2Ed[X p[(j) j TONxR(j)xWT (j)WT)]

- 4p2 di ()lW~)ATBA)[~jXj)P

-,[x(i)XT~)~)R~)LW j

+ 4v2 ExWjX T (j)Pj)RW(j)][W 
T(J)X(X T(j)-WT(j)R]

4+ 42 [X(j)X T (j)W~j)-RW i)]AW 
T(j)ETBA

-, T _~ )NT - 4w 2AATBAAW(i)[d(j)X(i)-P1

* AWj~Tj)BA (B-6)

A,*j-,w ()87LA



Now using the assumptions of independence, and noting that E{LW(j) -O,

terms 2, 5, 8, and 14 become zero. Regrouping terms then yields:

j l _21i(R+ATBA)]CW(j )[1-2ii(R+ATBA)] - 4 12RCw(j)R

+ E 4p2[d 2(j)X(j)XT(j)-PPT]

- 4P2[d'(j)X(j)-P][WT(j)X(j)xT(j)-wT2)R

2 . T, T \rw- 4 iX(j)X(j)W(j)-RW(j)][d(j)X(j)-p]

+ T Tj x( wj)X(j) T(j)-R(j)T/jP] .(B-7)

Now it can be shown that for W(j), d(j), and X(j) assumed gaussian:

E{d 2 (j)X(j)XT(j)} = E{d 2 (j)}R + 2PP T  (B-8)

E{d(j)X(j)WT(j)X(j)XT(j)} = piT(j)R + RW(j)PT + RP W(j) , (B-9)

E{X(j)XT(j)W(j)WT(j)X(j)xT(j)} = 2RCww(j)R

+ 2RW(j)wT(j)R

+ R Tr[Cww(j)R]

+ RTr[W(j)WT (j) .] (B-I)

These relations are shown by expanding each element of the matrices on

the left hand sides individually by using the summations implied by the

matrix notation on the right hand sides, applying the expression for the

expectation of 4 jointly distributed gaussian random variables

(eq. 7.2-15 of [23)), and reconstructing the matrices.
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Now, applying relations (B-8) through (B-la) to equation

cancelling terms, and regrouping yields:

CW~jl) [.L-2jiR+ATBA] w~)'12j(R+A BT)

+ 4p _)RC1.41.ii)R + RTr1S,4W(j)RJ

+ RE~d2 ('j- 2P Tg(i) + -Tj)W %.

+ EppTRW(j)PTPWT')P Ti)4 .(.1

Now, the mean square error evaluated at the mean weight vector is

E{d (j)}.-2PTWj+TjR~) Substituting this relation yields the

theorem's conclusion:

+ '412 1 R j + RTr[C (j)Ri

+ RE~ez(jJW=W(j)}

+ [P-RWCj)][P-R9(j)] Tt (B-12)

This concludes the proof of the theorem.
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APPENDIX C

PROOF OF THEOREM 3: SUFFICIENT CONDITIONS FOR BOUNDEDNESS

OF THE TRACE OF THE WEIGHT COVARIANCE MATRIX

The statement of Theorem 3 is:

Theorem 3: Sufficient conditions for boundedness of the trace of

the trace of the weight vector covariance matrix

1) If Theorem 2 holds, and

2) if a) + y Tr[R] < X
max max - max min

and
0 <Xmin

02 +y + YmTr[R]

or if b) y + y TrER] > X X
max max - max min

and

max
0< < 2 + 2 + Tr[R

max Ymax +max

Then Tr[CwW(j)] will be bounded for all time.

To determine conditions under which the weight vector covariance

matrix is guaranteed to remain finite, consider the recursion of the

trace of the weight covariance matrix (Eq. 9-7).
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First, for any matrices E, F, and G:

Tr[EFGJ = Tr[GEF] .(C-1)

Applying this relation to (9-7) yields:

Tr[CjW(j+l)] Tr{1i-2ii(R+A TBA) I[.I- 2u (R +ABA)]~~ C

+ 4112 Tr[RRCWW(j)3 + Tr[a]Tr[RCWW(j)]

+ Tr[RJ]Efe2(~ w ~~

" [P-R (2j)][PRW(j)] (C-2)

Now Moschner showed (relation 2.10 in [24]) that for F a real

symmetric matrix and G a positive semidefinite matrix that:

Tr[FG] :S max~eig{F}Ilr[G ] , (C-3)

Tr[FGJ > min~eI-g{Fj}TrfG] (rC-a)

By repeated application of (C-3) on (C-2) the trace of C (l may be

bounded:

Tr[CWW(j+l)] a ~2 Tr[CWW2)

+ 4p2jy'axTr[CWw(j)] + y~axTr[R]1Tr[CWW(j)1

+ Trf[R]Efe 2 0 w-

+ [P-R-w(j)] T[P-RW(j)](. (C-5)
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2 22
Tr[-+w(J+)] < (0m + 4p2 Yma + Y Tr[R])Tr[CW(j)]

-W max max max

T+ 4L2Ijr[R]E{e (j)IWW(J) }

+ [P-R-W(j)]T[p'R-W(J)]I (C-6)

where

Bmax :max{feig{I-2vj(R+ATBA)}I} (C-7)

Ymax max{eig{R}} (C-8)

This inequality fits the form:

Tr[CWw(J+l)] < aTr[Cww(j)] + c(j) (C-9)

where a is a positive constant, and c(j) is bounded in value. From

linear system theory it is known that Tr[Cww(j)] will remain bounded

when a < 1. Therefore if

2 + 4u2 Y2 + 4w2m Tr[R] < 1 (C-10)

max max max -

then Tr[Cw(j)] will remain bounded.

To evaluate the inequality of (C-1) requires knowledge of max .

Bmax is the .bsolute value of the eigenvalue of [I-2u(R+ATA)] which has
the greatest magnitude. Now, the eigenvalues of [I-2u(R+ABA)] are

l-24X i, where the Xi are the eigenvalues of R+ATBA. The maximum eigen-

value is l-2Xmin, and minimum eigenvalue is l-2,#Xmax, because Xi > 0.

Thus Smax is the absolute value of one of these expressions:

Omax = max{Il-21Xminf,jl-2XmaxI} (C-11)
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Now, since Xmax > Xmin' l-21Xmax < l-2Xmin' The only way thatNow, inceLmax mmax

1-2LAmax I might be greater than ll-2pX minI is when l-2imax is negative

but has a greater magnitude than l-21A min' Thus the requirement is

l-21JXmin > 21Amax-I for amax = l-21Xmin* Solving this inequality for p

finally yields the result that

l-2X if < 1
mi n +X' -

max min

SmaX -(C-12)

2A -l if >
- max+ min

These expressions for Bmax are now used to determine where (C-10)

holds true.

Case 1: when P < l ,substitution for B in (C-10)
Smax+Xmin max

results in:

(l-2miX 2 + 412yax2 + 4vy Tr[R] < 1 (C-13)min max max -

which can be solved to yield the additional condition on j:

r< 2 2 (C-14)
Xmin+ max+Ymax []

Thus if

0 < < min 2 2 X min Tr[R] (C-15)
m X min+Ymax+Ymaxr[]

then a < 1, and Tr[Cww(j)] is guaranteed to remain bounded.
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1

Case 2: when j> , substituting Bmax into (C-10) result,.
in:max min

in:

(2pXmax-l) + 4 2y2ax + 4 2ymax Tr[R] < 1 (C-16)

which yields the conditions on u of:

AI

max

X + 2 (C-i,max+ max maxTr[R]

Thus if

1 max
Xmax +mimax (C-l

mm Amax max maxr[.

then a < 1, and Tr[Cww(j)] will remain bounded.

The conditions on pj derived in the two cases may be manipulated to

yield a more acceptable form. Note that if:

2Ymax+ymaxTr[f] < Xmaxxmin (C-19

then the condition of the first case is satisfied when p is in the range

0 < < - min (C-20)

X<i A2  +Y2 4-y Tr[R] (-0
min max max r[

and the conditions for the second case are never satisfied. This proves

the first h,,lf of the theorem's conclusion.

Now consider the situation when

y2+yxTr[R] amin (C-21)
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Then the conditions of the first case are satisfied when

10 < < 1 C-22)

-max+ min

and the conditions of the second case are satisfied when

1 < L < (C-23)
ma +Xmi n 2ma+Ym 2x+Ym xTr[R]

max< ma maxrR

These two ranges for p may be combined to yield the single range of

max (C-24)

O < < .2 2 TrR
X max omax max rR

This is the proof of the second half of the theorem's conclusion.
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APPENDIX D

PROOF OF THEOREM 4: NECESSARY CONDITIONS FOR BOUNDEDNESS OF ThE Tk.2.

OF THE WEIGHT VECTOR COVARIANCE MATRIX

The statement of Theorem 4 is:

Theorem 4: Necessary conditions for boundedness of the tracz of thE

weight vector covariance matrix

For Tr[C ww(j)] to be a bounded sequence, it is necessary trat

1) Theorem 2 hold, and also that

2a) When + Tr[]> X2
mmin Ymin max

that 0 < p < max
thaO~j< 2 2- X2 +y2 +y Tr[R]

max ymin Ymi -

b) When X 2 2 + Tr[] < X 2mbn WYmin m - - max

that 0< j <
Ymin + YminTr[ ]

cWh2n + nTr[R] < X2
c) When mi - min

mln
that 0 << minn +

8min + Ymin Ymin



To find a necessary condition for Tr[CWW(j)] to remain bounded,

consider finding a sequence 6(j) which is a lower bound for the sequence

Tr[CWW(j)]. Then the sequence 8(j) must remain bounded for Tr[Cw(j)],

to be bounded, since if 6(j) grows without bound, and _(j)<_TrC W(l)],

then Tr[CWw(j)] will also grow without bound. Applying (C-1) and then

(C-4) to Eq. (9-7) in a similar manner as in Appendix C yields:

Tr(C4w(j+l)] > 2 Tr[C w(J)] + 4p2y2inTr[Cw(j)]

+4p2y mi Tr[R]Tr[CW(j) ]

+ 4p2{Tr[R]E{e2(j) 'W=.(j)}

+ [P-RW(j) T P-RW(j)]} (D-1)

where

6min = min{leig{I-2p(R+ATBA)}I} (D-2)

Ymin = min{eig{R}} (D-3)

Define the recursion for 6(j) as

2 2 2 2yminTr[R])6(j)

&(j+l) =(6min+4v Ymin+4  T

+ 42 [Tr[CWW(j)]E{e 2 (j)IW=(j)}

+ (P-RW(j))T(P-RW(j))] (D-4)

and

6(0) = Tr[Cw(O)] (D-5)
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The equation for 6(j) is of the form:

6(j+l) = a6(j) + c(j) (F -)

where a is a positive constant, and c(j) is a positive bounded sequence.

Again from linear system theory, 6(j) will be bounded if and only if

a<l. Evaluation of a requires knowledge of amin* Recall that

l-21JXmin > l-2pXmax* Therefore, if l-21 Xmax > 0, Smin=l- 2UXmax . However,

if l-2min < 0, then amin = 21Xmin-l" Otherwise, it is possible that

for some i, 1-2 A i = 0, so min=0 in this case. Thuse

1
l-2 mx  if j < 2

max

= 2 X -1 if u > (D-7)min~ mi - mi n

0 otherwise

Case 1: Consider the value of a when uI < Then 3
2Xmax

resulting in

2 22 2YiTr[R] < 1 (D-8)
a = (l-2vmax) + 4- Ymin + m [n

Solving for w yields

X
L < 2  max (D-9)

Xmax +Ymin+ymin Tr[]

Combining the two conditions on p yields the result that if

34



xmax 1 x (0-IO)

< min z 2
Xmax4ymin+Ymin Tr[]

then a < 1.

Case 2: Now consider the case when . < < 2 Then min:O,
max min

and the condition on a is:

a 4 2 2 + 2yminTr[R ] < I (0-11)a= Ymin+ mi

Solving for p yields

< (D-12)

22 Ymin+ymi Tr

The conclusion is that if

1 < 1 _2Xmx 2 2 nYTr[R] 2 min

\x2 min, min

then a < 1. (Note: this requires that

1X2 < (D-13)
2max  2 nrR

2 ym .+ Tr[RJ2 min+Ymin

or else no range exists.)

Case 3: Finally, consider the remaining case when p 2 Then-- 2 min

Bmin = 2Xmin-l, and the condition on a is written:
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2 2
a = (21Ami n1 +42 2 in + 4lminTr[R] < 1 (D-14)

Solving for . yields

Amin
TrER]+ (0-.R

rain {min+mmi

Thus, if

1 < < 2 2 , n (D-16)

min Xmin+ 'minyminTr[R]

then a < 1. Note that if

min- (D-17)
min +Ymin+IfminTr[R] 2min

then a > 1 whenever w > 2X1
_ _ 2min

Grouping these results for the three case, of ,i together in a

manner similar to that used in the proof of Theorem 3 yields the result:

a <1, if:

2 2 > 21) When Ymin + YminTr[R] max

S 2 max
O < X2 +. +2TrR]

max ¥min +min

2) When X2  < 2 + y2Tr[] <
mi- nmn Ymin - - max'

2 ymin + Tmi []
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2 23) When Ymin i Tr-] min

0min
0< x min + 2 i + Yminl-r[R ]

If none of these conditions are satisfied, then a > 1, and S(j) will be

an unbounded sequence, which implies that Tr[Cww(j)] is an unbounded

sequence. Thus satisfaction of the above conditions is a necessary

(but not sufficient) condition for Tr[Cww(j)] to be a bounded sequence.
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APPENDIX E

DERIVATION OF A CALCULABLE BOUNO ON - WHICH SATISFIES THE NUKY.

FOR CONVERGENCE OF THE MEAN WEIGHT VECTOR AND GUARANTEED BOUDE;......3S

OF THE WEIGHT VECTOR COVARIANCE MATRIX

Section 9 proposes a bound on p which is calculable ard satisfic

the conditions on i in Theorems 1 and 3. This appendix d.,E'onstra-£:

that the bound satisfies these criteria.

The bound (9-8) proposed is:

1O < < It

3Tr[R] + Tr[ATBA

Satisfying Theorem 1.

This bound satisfies the conditions for convergence of the mean

weight vector (Theorem 1) since:

1 1 1

ma x -Tr[R] + Tr[A BA] - 3Tr[R] + Tr[ATBA]

Thus if

O~<1 T(E
3Tr[R] + Tr[ATBA]

then

1 (;1

Tmax

satisfying the condition on W of Theorem 1.
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Satisfying Theorem 3.

This bound (E-1) also satisfies the conditions on p which guarantees

boundedness of the weight vector covariance matrix (Theorem 3):

Case 1 of Theorem 3: using the condition of case 1, the Fo..inq

inequality may be written:

mi nmi n
min + -- 2 + Y + yma T r[R]L

mi max min min Ymax ma

Then

I <mi n
min X mx 2< 2 + 'r[

Xmi. +X + a YmaxTr[R]

1

Tr[R] + Tr[ABA]

l )'min

3Tr[R] + Tr[ATBA] Xmin +max max Tr[R]

Thus if

T <.

3Tr[R] + Tr[ATBA]

then

0 < I < 2min
min +Ymax +YmaxTr

[R]

satisfying the condition on p of Case 1 of Theorem 3.
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Case 2 of Theorem 3: Begin with the equality:

1max
max _Ymax 2 2 Trr

max + Y-maTr[R] 'max "max Ymax r[
max Ymax max max

Now ax Ymax' So

l< Amax

ma + +Tr[R] 2 + y2 +Y Tr[R-
max max - max max max

l

Tr[R+ATBA] - T r + Tr[R]
[___1 Tr[R] Tr[R]_______

< >max
T <2

Tr[ATBA] + 3Tr[R] - X2 + Y2 + Y
- -max Ymax Ymax Tr[R ]

Thus if

0T (E-7)
3Tr[R] + Tr[ATBA]

Then

X
2max (E-8)
Xmax + Ymax + YmaxTrE i

satisfying the condition on u of case 2 of Theorem 3.

Since both cases of Theorem 3 are satisfied, the proposed bound

(E-1) on will guarantee boundedness of the weight vector covariance

matrix.

g0
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Calculability

Tr[ABA] is certainly calculable, since the matrices are all

specified by the designer. Tr[Rj] is also computable as discussed in

section IX; it is n times the input power to the filter.
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APPENDIX F

SIMULTANEOUS DIAGONALIZATION OF TWO HERMITIAN MATRICES

This appendix shows that a transformation exists which simultaneously

diagonalizes two hermitian matrices. This is a previously solved problem,

included nere for completeness [25,26]. This appendix follows Fcte s _25]

development. Gantmacher [26] arrives at the same results by a different

path.

The theorem is stated as follows: Given two hermitian matrices A

and B with B nonsingular, a matrix S exists such that S+BS = I, tne

identity matrix (where S+ denotes the complex conjugate transpose of the

matrix S), and S+AS = Y, where _ is a diagonal matrix.

The proof begins by noting that for any hermitian matrix there exists

a unitary transformation which will diagonalize that hermitian matrix.

Thus, for the hermitian matrix S there exists a unitary matrix P such that

P BP=jiB where ' is the diagonal matrix with diagonal elements which

are the eigenvalues of matrix B.

Denote the diagonal matrix which has as elements the square roots of
the eigenvalues of B as -1/2 te relation 1

'/2
Under the assumption that " (and thus B) is nonsingular, - 1

also nonsingular. Using the inverse of 1/2 results in the relation:

1(/2 + p B 1 2 ' : _ (e l)

1+I/2 -1

Thus the matrix P(B ) transforms B to an identity matrix.
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Now consider applying this transformation to the hermitian matrix A.

This would resut in the matrix:

1/2 + -1P +(i 1/2 -1(F2U. (F-2)

This matrix is also hermitian. Therefore, there exists a unitary matrix

Q such that the resulting unitary transformation diagonalizes the rmatrix

of expression (F-2), yielding:

+ 112 = , (F-3)

where ' is a diagonal matrix. Note that ( _ is a transformation

which will diagonalize the matrix A. Denote this transformation by S:

S p( l/2)- . (F-4)

Now apply this transformation to the matrix B.

Since P was originally chosen so that P+BP

= as ra U42)+ I P+Bp(4I/)'I (F-5)

S+_ _ LO B ) -]

By application of (F-1)

= I , (F-6)

since is a unitary transformation. Therefore the matrix S satisfies

the two relationships

S+OS = I , (F-7)

S+AS = ' . (F-8)
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where T is a diagonal matrix and S p/, where P is a unitary matrix

which diagonalizes B, _/2 is a diagonal composed of the square roots of

the eigenvalues of B, and Q is a unitary matrix which diagonalizes
1/2 + -l + 1/2 -1

U4 ) I E AP ( 4 )-

Although deeper knowledge of S and T is not required, the following

properties can be shown:

1) The columns of S are the eigenvectors of the trix B-1,

2) The values of the diagonal elements of ' are the eigenvaiues

of the matrix B -1A.

These properties can be shown as follows: Begin with the relation:

SAS _ (F-9)

Then

AS - (ST)I (F-1)

Now, premultiply by B-1

B-IAS - BIs ) I (F!

An expression for BI(S+)"I can be found by considering the relation:

S+BS = I (F-12)

Inverting both sides yields:

(S+BS) "I = S1'B1I(S+) "  : I (F-13)

Then premultiplying by S yields:

BlVs_) "I  
= S i-l)
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Substituting this relation in (F-I) yields:

B-1 AS = ST (F-15)

which shows that the columns of S are the eigenvectors of BIA and the

diagonal elements of ' are the corresponding eigenvalues.
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APPENDIX G

PROOF OF THEOREM 5: OPTIMUM WEIGHT VECTOR FOR SOFT-CONSTRAINT LMS

ALGORITHM GOES TO OPTIMUM WEIGHT VECTOR FOR FROST'S HARD CONSTRAINT

LMS ALGORITHM

The theorem statement is:

Theorem 5: Soft Constraint Solution Goes to Hard Constraint Solution

If

1) The weighting matrix B in the soft constraint algorithm is

replaced by yB, so that the weighting on the constraints may be

increased simultaneously by increasing the scalar y, and if

2) The data vector autocorrelation matrix R is nonsingular and if

3) The weighting matrix B is nonsingular, and the matrix A is full

rank, then

lim Wop t  Whc (G-l)

Proof: The proof begins by writing Wop t in terms of yB from (6-3):

WyT -1lWopt (R+ _ BA) (P + yATBH)

Now apply the matrix inversion lemma (section 5.7 of [25]) to R + yA BA:
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Wot I - R-IAT(I - I  + AR-IAT)-'ARl']P

+ [R- 1 - R-1AT(4B-l + AR-lAT) -i AR-'] yATBH

The conditions of the lemma are guaranteed to be satisfied in th s
use and in the next, due to the assumptions made on R, B, and on A.

This assumption is also required by Frost to yield a unique optirun

weight vector for his algorithm. Now apply the matrix inversion lemma
to- + AR-AT in the second term:

op t  [R - _AT + AR-AT)- AR- I P

+ {R-l _ A T [(ARlAT)-1

~(ARAT) - [y + (ARlAT) I I (AR1 A T) AR')yTBH.

(G-3)

Now factoring out R- as a postmultiplier in the first term and as

a premultiplier in the second term, and multiplying the AT factor of

ATBH in the second term through yields:

Wo = I - R -IA T(- + AR'AT)l'A]R-Ip

-(AR-lIA T )- I fy+( lT)l(A-l T-l ]ARlAT}YBH.

(G-4)

Since (AR'AT)-1 (ARL'AT) = I, the second term reduces, yielding:

Wopt  If -I.l-Ip
_T tI__y i + AR'lAT)-IA]Rl"

+ RAT-AT[I-(ARAT)"l[yB+(ARlAT)l]}.BH

.S ! - ... .... , .. ...7



I= [ A RT(2I' + AR- AT) - -A]

+ R1 {.ATT+A A 1 AT) -1f§+ j.

Now,

lIim (I4-1 + AR-IAT) - = (AR"

and

lir [B_+ (AR'IAT)I] -iyB = lir ( K

So

lim Wop t 
=  - R -AT(AR- _

+ R (LR-1 T -1+ R-IAT(AR-IAT)I h_! -

and since from (2.8) of Frost [9] (when rewritt-r

of this paper):

Whc = [I - RIAT(AR-A')Ifx

- IAT(AR -AT )I ,- A

the conclusion is

lim Wp t  Whc (G-IO)

and the theorem is proved.
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